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We study a directed coupled map lattice model ind52 dimensions, with two degrees of freedom associated
with each lattice site. The two freedoms are coupled at a fractionc of lattice bonds acting as quenched random
defects. The system is driven~by adding ‘‘energy,’’ say! in one of the degrees of freedom at the top of the
lattice, and the relaxation rules depend on the local difference between the two variables at a lattice site. In the
case of conservative dynamics, at any concentration of defects the system reaches a self-organized critical state
with universal critical exponents close to the mean-field valuest t51, ts52/3, andtn51/2, for the integrated
distributions of avalanche durations (t), size (s), and released energy (n), respectively. The probability
distributions follow the general scaling formP(X,L)5L2aP(XL2DX), wherea'1 is the scaling exponent for
the distribution of avalanche lengths,X stands fort, s, or n, andDX is the~independently determined! fractal
dimension with respect toX. The distribution of current through the system is, however, nonuniversal, and
does not show any apparent scaling form. In the case of nonconservative dynamics—obtained by incomplete
energy transfer at the defect bonds—the system is driven out of the critical state. In the scaling region close to
c50 the probability distributions exhibit the general scaling formP(X,c,L)5X2tXP@X/jX(c),XL

2DX#,
wheretX5a/DX and the corresponding coherence lengthjX(c) depends on the concentration of defect bonds
c asjX(c);c2DX. @S1063-651X~96!01609-1#

PACS number~s!: 05.40.1j, 64.60.Ht, 68.35.Rh

I. INTRODUCTION

Critical behavior in the vicinity of a second-order phase
transition is known to be sensitive to the presence of
quenched random defects@1#. Quenched disorder can cause a
change of the universality class of the critical behavior, in
the case of weak disorder, or lead to a variety of new phe-
nomena, as in random-field systems@2#. The case of strong
disorder, represented for example, by the presence of random
bonds in a spin system, can lead to a multiplicity of meta-
stable states and frustration, as in spin glasses@3#.

In contrast to conventional critical phenomena in systems
that are tuned to a critical point by varying one or more
external parameters, much recent work@4# has examined the
behavior of extended open dynamical systems~sandpile cel-
lular automata being a good example! that tend to self-
organize into metastable states with long-range spatial and
temporal correlations. Suchself-organized criticality~SOC!
in a system that is not tuned to a critical point can be ex-
pected to be somewhat more robust and less sensitive to
perturbations.

The question of relevance of such perturbations in SOC is
of considerable interest. A dynamic renormalization group
study of spatially continuous models@5#, which are believed
to describe some aspects of self-organization found in cellu-
lar automata, shows that loss of translational invariance due
to quenched disorder is a relevant perturbation for SOC.
Similar considerations apply to the role of conservation laws
in the evolution rules of such systems. Various examples
studied so far@6# reveal, however, that having a conservation

law in the dynamics is neither a sufficient nor a necessary
condition for the critical state to appear.

We explore some aspects of these questions in the present
work, where we introduce and study atwo-degree-of-
freedom~or two-color! directed coupled map lattice model
on a two-dimensional square lattice. In our system there are
two variables associated with each lattice site, and these two
freedoms are practically independent in the evolution, except
at a random fractionc of the lattice bonds, which act as
quenched random defects. This model~termed modelB in
earlier work @7#! provides a simple example of a situation
wherein quenched disorder acts differently from annealed
disorder@8#. Similar models have also been studied in the
context of signal transmission in a neural network@9#.

The system is driven—by adding ‘‘energy,’’ say—to one
of the degrees of freedom at a random site at the top of the
lattice. Instabilities can be caused when the difference be-
tween the two variables at a site exceeds a threshold value, in
which case a relaxation occurs, and the total energy accumu-
lated in both states at an unstable site is transferred to the
forward neighboring sites, creating an avalanche. Partition-
ing of the energy between the states at neighboring sites
depends on the kind of bond~defect or normal! connecting
these sites with the unstable neighbor~see Sec. II for details
of the dynamics!. Avalanches can be characterized through
the usual indicators such as durationt, defined as the number
of steps the instability progresses toward the lower boundary
of the lattice, and sizes, the number of lattice sites affected.
In addition, we also monitor the total energy released in an
avalanche~or the number of relaxations! n, as well as the
total number of particles leaving the system at the lower
boundary, i.e., the outflow currentJ.

Both conservative and nonconservative situations are pos-
sible by altering the energy transfer at defect bonds. The
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present numerical simulations, combined with a scaling
analysis of the results, help in determining the conditions
under which the coupled map lattice~CML! reaches a SOC
state, and also the universality class to which the critical state
belongs. When the dynamics is conservative, i.e., the total
energy that is removed from one site appears at its neighbors,
the system self-organizes into a critical state with universal
scaling exponents. On the contrary, if the energy transfer is
incomplete at defect bonds, our results suggest that the sys-
tem is subcritical, with a finite coherence length that depends
on the defect concentrationc. We determine a scaling func-
tion for the distribution of size and duration of avalanches.

The case of site defects in a critical-height sandpile au-
tomaton has been examined in previous work@7,10#, where
we showed that the presence of nonconserving defects can
lead to a loss of SOC. Site defects~either annealed or
quenched! introduce a coherence length in the problem,
which diverges as the concentration of defects vanishes; the
relevant exponents can be derived exactly@11#, since the
directed Abelian sandpile with defects can be viewed as a
random branching process.

In Sec. II we introduce the model and define the scaling
forms of various distributions. Results are given in Sec. III
for conservative dynamics and in Sec. IV for the case of
nonconservative dynamics, followed by a short summary and
discussion of the results in Sec. V.

II. DYNAMICAL MODEL AND SCALING

The coupled-map lattice studied here is patterned on the
two-dimensional directed Abelian sandpile cellular automa-
ton @12#, which is a simple example of an exactly solvable
system exhibiting SOC. We associate two dynamical vari-
ables (h1 ,h2), which for convenience can be termed ener-
gies, with each lattice site of a two-dimensional directed
square lattice of linear sizeL. The relaxation process at lat-
tice site (i , j ) is determined by the actual values of
(h1 ,h2), as follows. If the absolute value of thedifference
betweenh1 andh2 exceeds a critical valuedc , i.e.,

uh1~ i , j !2h2~ i , j !u>dc , ~1!

then the site (i , j ) becomes unstable and bothh1 andh2 are
reset to zero,

h1~ i , j !→0, h2~ i , j !→0. ~2!

We takedc52 in our simulations. The lattice sites are con-
nected by bonds that can be either positive or negative, and
these affect the subsequent relaxation rules differently.~We
consider the situation when most bonds are positive, and a
fraction c of negative bonds are distributed at random and
act as defects.! Along positive bonds,

h1~ i11,j6!→h1~ i11,j6!1@h1~ i , j !1h2~ i , j !#/2, ~3!

and along negative bonds,

h2~ i11,j6!→h2~ i11,j6!1@lh1~ i , j !1h2~ i , j !#/2. ~4!

j65 j6@12(21)i #/2 and (i11,j6) label the two down-
stream neighbors of (i , j ). As can be seen, forl51 the total
energyh11h2 disappearing from site (i , j ) reappears in ei-

ther h1 or h2 of the forward neighbors regardless of the
parity of the connecting bonds—the dynamics is conserva-
tive. If l,1, some amount of energy is lost along the nega-
tive bonds and the dynamics is nonconservative. This case is
considered in Sec. IV below.

The system is driven by adding an energy unit at random
sites at the input at the top~i.e., along the rowi51),

h1~1,j !→h1~1,j !11, ~5!

and allowed to proceed following the rules embodied in Eqs.
~1!–~4! until there are no further instabilities. This consti-
tutes an avalanche. Starting from an initially random con-
figuration, the system eventually reaches a SOC state@7–9#
when there are avalanches of all duration and size scales.
These can be characterized through the following four quan-
tities.

~a! The lengthl is the total distance that an avalanche
propagates.P(l );l 2(11a) is the probability distribution of
avalanches of lengthl .

~b! The sizes is the number of sites at which relaxation
occurs in one avalanche.D(s);s2ts is the distribution of
avalanches of sizes or greater.

~c! In sandpile automata a distinction can be made be-
tween the number of particles toppled and the number of
sites involved in an avalanche@13#. The number of particles
that topple at one unstable site in our model is
n( i , j )5h1( i , j )1h2( i , j ) in the conservative case@cf. Eqs.
~1!–~4!#, and this quantity varies from site to site. Therefore
the total number of relaxations,n, defined as
n5( ( i j )n( i , j ), is not simply proportional to the sizes,
which is defined ass5( ( i j )1, where the sum in both cases
runs over all sites involved in an avalanche. This introduces
the distribution of avalanchesQ(n);n2tn of the number of
relaxations>n.

~d! The duration of an avalanche,t, is described by the
distribution P(t);t2(11t t). From finite-size scaling argu-
ments@14# in the SOC state these distributions should obey
the following general scaling form:

P~X,L !5L2aP~XL2DX!, ~6!

wherea is the above-defined exponent of the distribution of
lengthsP(l ), andX representss, n, or t. Correspondingly,
DX stands for the appropriate fractal dimension, which is
defined via the following relations:

^s& l ;l Ds, ~7!

^n& l ;l Dn, ~8!

and

^t& l ;l Dt, ~9!

where^& l denotes an average over all avalanches of selected
length l ~i.e., avalanches that exactly terminate on thel th
row!.

Note thatDt is the dynamic exponent~usually denoted
z). In the present directed model, since avalanches propagate
only in the forward direction, the duration is equivalent to
the length. The dynamic exponent is thus exactly 1, and
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t t[a. This need not be the case when the relaxation rules
are more complex@7#. Furthermore, all the exponents are not
independent, since the scaling relations@7#

a5Dsts5Dntn5t tDt ~10!

are valid for the exponents of integrated distributions as de-
fined above.

In the present work we consider quenched disorder; i.e.,
our numerical results are averaged over several sample lat-
tices, each prepared by distributing defect bonds with con-
centrationc. We keep the lattice configuration fixed for a
large number of Monte Carlo steps~which is equal to num-
ber of events!, and consider both cases of conservative and
nonconservative transfer at defect bonds. In order to mini-
mize effects of boundaries, we chose so-called free bound-
aries in the perpendicular direction. This is achieved by us-
ing a lattice of size 2L3L and initializing avalanches
between the sitesL/211 and 3L/2 at top. According to the
above dynamic rules, only escape of energy is possible at the
bottom of the lattice between sites 1 and 2L. Results of our
numerical studies are presented in Secs. III and IV.

III. CONSERVATIVE DYNAMICS

For l51 in Eq. ~4!, the dynamics is conservative. The
system reaches the SOC state, which we characterize through
the quantities enumerated in Sec. II. It is sufficient to con-
sider the disorder regime ofc<0.5 owing to the symmetry
c→12c,h1→h2. When c50 this model reduces to a di-
rected Abelian sandpile automaton in theh1 degree of free-
dom, and the empty state in the other degree of freedom,
h250 at all sites. For nonzeroc, the SOC state is more
difficult to describe. We study the histogram of total energy
per site, defined asE5h11h2 after a relaxation event, for
bothc50 and a few values ofcÞ0. In the casec50 it takes
nonzero values at the interval@0,1#, however, forcÞ0 much
larger values of energies occur, although with smaller prob-
ability compared to those betweenE50 andE51. Spread-
ing of the distribution in the presence of defect bondscÞ0
indicates that the critical state is realized via multiplicity of
configurations of the dynamic variablesh1 and h2, which
depends onc.

We observe, however, that the concentration of defect
bondscÞ0 doesnot appear to affect the critical exponents
characterizing the SOC state in this model. The distribution
of lengths of the relaxation clustersP(l ), sizeD(s), and

FIG. 1. Double logarithmic plot of~a! distri-
bution of avalanche lengthsP(l ) vs l ; ~b! inte-
grated distribution of avalanche sizesD(s) vs s;
~c! integrated distribution of number of relax-
ationsQ(n) vs n, for two concentration of defect
bondsc50.1 ~dotted curves! and c50.5 ~solid
curves!; ~d! distributions of avalanche lengths
and sizes ~not integrated!, P0(l ) vs l and
D0(s) vs s, respectively, for the casec50.
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number of relaxationsQ(n) for two different concentrations
of defect bondsc50.1 andc50.5 are shown in Fig. 1. The
exponents are numerically determined~with the statistical
error bars! to be a51.05160.044, ts50.65060.028, and
tn50.50960.004, independentof defect concentrationc,
suggesting that this model has universal criticality.

In Fig. 1~d! the distributions for length and size of ava-
lanchesP0(l ) and D0(s) are shown for the casec50.
Slopes of these curves, corresponding to the above defined
exponents 11a and 11ts , respectively, are estimated as
1.99860.019 and 1.5860.04. For tn we find the value
0.52860.022.

In Fig. 2 we present results for the time averaged size
^s& and relaxed energieŝn& in avalanches of a fixed~se-
lected! length l . According to Eqs.~7! and ~8!, slopes of
these curves determine the mass-to-scale ratios~fractal di-
mensions! Ds and Dn , which are determined to be
Ds51.61560.007 andDn51.99760.008. Plotted are the re-
sults for c50.5, but it was checked that the values of the
exponents remain concentration independent.

In order to fully characterize the self-organized critical
state, we have determined the various exponents and the cor-
responding scaling functions. The results of the finite-size
scaling fit according to Eq.~6! are shown in Figs. 3 and 4,
where we useda51.04,Ds51.62, andDn52.

In contrast to many sandpile models, where the number of
topplings ~corresponding ton in our model! is expected to
scale with a fractal exponent@15#, we find that the relaxation
rules ~1!–~4! lead to a rather classical exponentDn52. The
distributions of the size of relaxation clustersD(s,L) and the
distribution of the number of relaxationsQ(n,L) satisfy the
finite-size scaling form~6! with the above determined expo-
nents.

The distribution of outflow currentG(J,L), which is the
current that flows over the lower boundary of the system,
rather than having a power-law dependence onJ, fulfills the
finite-size scaling form@14#

G~J,L !5L2bG~JL2f!, ~11!

whereb52f in the stationary state. In Fig. 5 we show the
distributionG(J,c,L) for ~a! fixed concentration of defect
bondsc50.5 and various lattice sizes, and~b! for fixed lat-
tice sizeL5192 and various concentrations of defectsc. The
distribution G(J,c,L) for finite concentrationc of defect
bonds is rather localized, as opposed to the casec50, where
the distribution is broad. We find no apparent finite-size scal-
ing for G(J,c,L) for nonzero values ofc.

We end this section with a comment on numerical values
of the critical exponents. Our results suggest that the values
of the exponents for avalanche duration and for the number
of relaxations are close to those in the mean-field SOC
@16,17#—in our notation, 11t t'2, and 11tn'3/2 @18#.
The mean-field universality class@16# is obtained in self-
organizing sandpile models where~i! there is a frontlike
spreading of avalanches with noninteracting sites at the front,
and ~ii ! a global constraint exists, which maps the dynamic
model to acritical branching process. Although our model
has somewhat more complex evolution rules, the exponents

FIG. 2. Double-logarithmic plot of the average values of size
^s& l and number of relaxationŝn& l in clusters of selected length
l , vs l .

FIG. 3. Double-logarithmic plot of the integrated distribution of
size of avalanchesD(s,L) vs sizes for several different values of
lattice sizeL ~above!, and the corresponding finite-size scaling plot
according to Eq.~6! ~below!.
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appear to be in the same universality class.~Note that in our
model, compared to the sandpile automata, there is one more
independent exponent, i.e., 11ts'5/3.!

IV. THE CASE OF NONCONSERVATIVE DEFECTS

WhenlÞ1 in Eq. ~4! the model becomes nonconserva-
tive at defects bonds. By studying the probability distribu-
tions of durationP(t,c,L) and sizeD(s,c,L) of avalanches
for various concentrations of nonconserving defect bondsc,
we find that SOC behavior is lost as soon as energy conser-
vation is lost.

One quantity that proves to be useful in characterizing the
present situation is the average number of relaxations
^n(l )&, which occur in all kinds of clusters up to lengthl
~which is different from the average number of relaxations in
clusters of selected length, which was considered above!. In
the case of conservative dynamics this quantity exhibits a
power law@7#

^n~ l !&;l Dn~12tn!, ~12!

independent of the degree of disorder.
Numerical results are obtained by fixingl50.9 and vary-

ing c. Shown in Fig. 6 are results for the average number of
topplings^n(l )&, for the conservative case~open circles! as
well as forl,1 and different values ofc, where it can be

seen that the power law is lost and the results depend on the
concentration of defect bondsc ~the remaining lines in Fig.
6!.

We further study the effects of concentration of defect
bonds on the distributions of size and duration~or length! of
the relaxation clusters. In Figs. 7~a! and 7~b! these distribu-
tions are shown forL5128 and for few values ofc. The
following general scaling form is appropriate for the case of
lattice disorder@10#:

P~X,c,L !5l lPP~ l lXX,l lcc,l 21L !, ~13!

wherel i , i[X,c,P, are the scaling exponents for the vari-
ablesX, concentration of defect bondsc, and the generalized
scaling function itself P, respectively. By chosing
l 21L;1 we have

P~X,c,L !5LlPP~LlXX,Llcc,1!, ~14!

which is appropriate for the finite-size scaling analysis. The
scaling function on the right-hand side of Eq.~14! is numeri-
cally determined from the data for various values ofL and
c. As the analysis in Sec. III shows, in the case of conserva-
tive defects this scaling function is independent onc and
depends onL as

P~X,c,L !5LlPP~LlXX!. ~15!

FIG. 4. Same as Fig. 3 but for the integrated distribution of
number of relaxationsQ(n,L) vs n for three different values of
lattice sizeL ~top!, and the corresponding finite-size-scaling plot
according to Eq.~6! ~bottom!.

FIG. 5. Double-logarithmic plot of the distribution of outflow
currentG(J,c,L) vs currentJ for fixed concentration of defect
bonds c50.5 and various lattice sizesL ~top!, and for fixed
L5192 and various concentrationsc as indicated~bottom!.
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@This is exactly Eq.~6!, where the scaling exponents are
identified aslP52a andlX52DX .# This implies that the
scaling exponent of the conservative defects in the expres-
sion ~14! is lc,0, and thus, these types of defects are irrel-
evant for SOC.@This conclusion is also supported by the fact
that numerical values of the exponents used in the scaling fits
in Sec. III satisfy the theoretical scaling relations~10!.# On
the contrary, when the defects violate the conservation law of
the dynamic rules, the results are quite different. The distri-
butions@cf. Figs. 7~a! and 7~b!# depend explicitly onc, and
the finite-size scaling fit~15! is inappropriate.~Even fitting to
this functional form gives poor results, the badness of the fit
depending onc.! In order to study these effects in a more
quantitative way, we fixL and chose another variable in the
general scaling form~13!, namely,l lXX51, leading to

P~X,c,L !5X2lP /lXP~1,X2lc /lXc,X1/lXL !, ~16!

which could be also written as

P~X,c,L !5X2tXP@X/jX~c!,X/LDX#. ~17!

with identification lX52DX , tX5lP /lX(5a/DX), and
jX(c)5clX /lc5c2DX /lc. Here jX(c) is the corresponding
coherence length, which, as is evident in Fig. 6, varies with
the concentration of defect bondsc. By fitting the numerical
data in Figs. 7~a! and 7~b! to the scaling form~17! we deter-
mine thec dependence ofjX(c), which appears to be most
satisfactorily described asj l 51/c andjs5c2Ds, for the dis-
tributions of length and size, respectively,t l [a, ts , and
Ds being the exponent determined in Sec. III. The results are
shown in Figs. 7~c! and 7~d!. With this result in hand, we

may conclude that the numerical value of the scaling expo-
nentlc in the expressionjX(c)5c2DX /lc is lc51, within
numerical error. That is, defects that violate the conservation
law of the dynamics arerelevantperturbations for the SOC
state. Owing to the factorX/LDX in the scaling function~17!,
we restrict the fits to rather large concentrationsc @see Figs.
7~a! and 7~b!# in order to satisfy the relationj/L!1. It is
interesting to note that the scaling region where Eq.~17!
applies is restricted to a finite range of values ofc,c* in the
vicinity of the point c50. For instance, the curves corre-
sponding toc50.5 in Figs. 7~a! and 7~b! do not obey the
scaling form ~17!, indicating that c*,0.5. In the limit
c50 the dynamics becomes conservative and true SOC re-
appears@cf. Fig. 1~d!#.

Similar scaling fits were introduced earlier in Ref.@10# in
a simple critical height model with site defects. Here we
demonstrate that in the case of more complicated relaxation
rules with nonconservative bond defects, the coherence
lengths have the same general dependence on the concentra-
tion of defects, namely,jX(c);c2DX, where, in principle,
the values of the exponentsDX depend on the dynamic
model. Exact expressions for the coherence lengths in the
case of the directed Abelian sandpile model with site defects
have been obtained by mapping the model to a random
branching process@11#.

V. SUMMARY AND DISCUSSION

In this work we have further explored the role of defects
in models of self-organized criticality. In the case of sand-
piles with random site defects@10#, the dynamics is altered
locally at defect sites. The situation of defects having a more
global influence is also of interest, and we achieve this in the
present two-color random bond model. Our coupled map lat-
tice has two degrees of freedom associated with each lattice
site. Disorder is present in the form of quenched random
bond defects, which can be both conserving (l51) or non-
conserving (lÞ1). There is a preferred direction of trans-
port, which serves to simplify the dynamical evolution rules,
leading to a minimal model with quenched random bonds.
The evolution rules of the model are motivated by the signal
transmission in adirectedneural network, where quenched
disorder is known to play an important role. Preliminary
studies@7,8# have indicated that annealed and quenched ran-
dom disorder can behave differently, and our model is one of
the simplest examples. Similar self-organizing coupled-map
lattice models have been studied to some extent in the litera-
ture as models of more realistic sandpiles@19#, abstract ex-
amples of adaptive self-organizing systems@20#, vector-state
models@21#, and as nondirected neural networks@9#.

With conservation,l51, in the limit of no disorder,
c50, the model becomes an Abelian CML with single dy-
namic variable~energyh[h1), and reaches a SOC state in
which the distributionD(h1) is nonzero at the interval
@0,1#, andh250 everywhere. For nonzero concentration of
defect bonds (cÞ0), an additional stateh2 is generated at a
fraction c of lattice sites, which affects the propagation of
avalanches. The SOC state is again reached under the condi-
tion that the total energy~consisting ofh11h2) accumulated
at an unstable site is completely transferred to its neighbors.
Conservation ofh1 by itself appears to be insufficient. The

FIG. 6. Double-logarithmic plot of the average number of relax-
ations up to distancel from the top of pile^n(l )& vs l for con-
servative defectsl51 ~open circles! and for l,1 and various
concentrations of nonconservative defectsc as indicated.
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critical state has a more complex structure, evidenced by a
spread in the distribution of the values ofh1 and h2, the
width of the distribution being a strong function ofc, as is
shown in Fig. 8. However, the criticalexponentscharacter-
izing the SOC state appear to beindependent~within numeri-
cal uncertainty! of the concentration of defectsc. By redis-
tribution of energies, the system adjusts to the presence of
defects and thus maintains its criticality. Numerical values of
these exponents suggest that bothc50 and c.0 models
belong to the mean-field SOC universality class@16,17#. In
particular, exponents for the distributions of the duration~or
length! of relaxation clusters and the number of relaxations
are close to the exact values 11a'2 and 11tn'3/2, re-
spectively. Due to the more complex dynamical rules in our
CML model whencÞ0, we can distinguish betweentn and
the exponent of the distribution of size of avalanchests ,
which are equivalent in Abelian sandpile models@13#; the
present results suggest that 11ts'5/3.

By modifying the relaxation rules in a way such as to
permit incomplete energy transfer at defect bonds~i.e., h2 is

not conserved whileh1 remains conserved!, we study the
significance of the conservation on the SOC state. Similar to
the case of sandpile automata with site defects, the self-
organizing CML is driven out of the critical state~cf. Fig. 7!,
with the concentration of defect bondsc playing the role of a
control parameter. It should be stressed that in our model the
lack of particle conservation is linked to the quenched defect
structure: with the present rules, it is not possible to have a
nonconservative model that does not also have defects. This
enables the quantitative analysis of the subcritical state in
terms of varied coherence lengthjX(c), as done in Sec. IV.
It is interesting to note that the distributions in Figs. 7~a! and
7~b! do not depend on the degree of nonconservation@which
is indexed by the parameterl in Eq. ~4!; see also Ref.@7##,
but only on the spatial distribution of defect bonds~indexed
by the parameterc). It is very possible that a cellular au-
tomaton with otherwise nonconservative dynamics~there are
by now several examples in the literature whereby one can
implement nonconservative evolution rules and reach a SOC
state@6#! becomes subcritical upon introduction of conserva-

FIG. 7. Top: Double-
logarithmic plot of the distribution
of lengthP(l ,c) vs lengthl and
the integrated distribution of size
D(s,c) vs sizes of avalanches for
few concentrations of nonconser-
vative defects~from right to left:
c5 0.1, 0.2, 0.3, and 0.5! and
fixed L5 128. Bottom: Scaling
plots of the same distributions for
c50.1, 0.2, and 0.3 according to
Eq. ~17!.
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tive defects, similar to our model in Sec. IV. We have not
considered this kind of model in the present work. Similarly,
the question of the relevance of the spatial correlation of
defects for the SOC state is left for future study. The coher-

ence lengths are tuned by the concentration of defect bonds
according to the general lawjX(c);c2DX. In the case of site
defects, the sandpile automaton can be mapped onto a ran-
dom branching process, and the exact expression for the
j t(c) has been derived~see Ref.@11# for details!. We suggest
that the scaling form~17! together with the expression
jX(c);c2DX for the coherence lengths applies for the prob-
ability distributions in a wider class ofsubcritical self-
organizing systems.

In contrast to spatially continuous models in which disor-
der is always a relevant perturbation@5#, our numerical re-
sults suggest that the present coupled-map lattice model self-
organizes into a universality class of the mean-field SOC,
which is robust to quenched random bonds, as long as the
dynamics is conservative. The conservative defects influence
the distribution of energies per site in the critical state and
alter the nonuniversal quantities, such as outflow current,
whereas the universal properties, i.e., critical exponents and
scaling functions, are not affected. However, a question re-
mains as to whether other types of defects, such as those
studied in discrete sandpile automata in Refs.@7,22#, com-
bined with different dynamic rules, may lead to continuous
tuning of the universality class with a parameter in CML
models.
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